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A B S T R A C T

Magnetoelastic anisotropy is one of the most essential and fundamental characteristics in the magnetic aniso-
tropy, which holds the core application and broad prospects in advanced flexible magnetic devices. Here, we
determined the stress-coefficient of magnetoelastic anisotropy of Fe, Co and Ni thin films deposited on flexible
polyvinylidene fluoride (PVDF) substrate. Owing to an anisotropic thermal expansion of PVDF, a uniaxial stress
can be effectively generated and transferred to the magnetic films in-situ by changing the temperature. The
magnetic anisotropy constants at different compressive stresses were quantitatively investigated with anisotropic
magnetoresistance (AMR). Through fitting the AMR curves at different compressive stresses, the stress-coeffi-
cient of magnetoelastic anisotropy of Fe, Co and Ni thin films were determined to be

± ×(6.31 0.19) 103 erg cm−3 GPa−1, ± ×(2.71 0.13) 104 erg cm−3 GPa−1 and
± ×(2.46 0.19) 105 erg cm−3 GPa−1, respectively. These values are basic magnetic parameter for magnetic

elements, which are helpful for evaluating the performance of magnetic devices under flexible/stretchable
conditions.

1. Introduction

Magnetic anisotropy is an important physical parameter to de-
termine the preferential alignment of spin orientations in magnetic
materials [1,2], which is quite essential for various applications in
many devices such as magnetic storage, magnetic sensors and non-vo-
latile magnetic random access memories [3–5]. In particular, magne-
toelastic anisotropy originates from the stress-induced magnetic ani-
sotropy, which has received extensive attention recently for the high-
speed development of flexible/stretchable magnetoelectronic devices
[6–13]. From the viewpoint of practical applications, it is necessary to
understand the evolution of magnetoelastic anisotropy of magnetic thin
films under stress, and to improve its performance of magnetoelectronic

devices under flexible environment [14]. Therefore, to determine the
ratio of change in magnetic anisotropy with stress, defined as stress-
coefficient of magnetoelastic anisotropy, is of crucial significance not
only to the fundamental magnetism but also for designing flexible
magnetoelectronic devices.

In this work, we determined the stress-coefficient of magnetoelastic
anisotropy of Fe, Co and Ni thin films deposited on polyvinylidene
fluoride (PVDF) substrate through anisotropic magnetoresistance
(AMR) measurement. The PVDF substrate has an anisotropic thermal
expansion, which can transfer a uniaxial compressive stress to the films
grown on it merely by changing the temperature. Through fitting the
AMR curves at different stresses, we calculated the stress-coefficient of
magnetoelastic anisotropy of Fe, Co, and Ni thin films to be
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± ×(6.31 0.19) 103 erg cm−3 GPa−1, ± ×(2.71 0.13) 104

erg cm−3 GPa−1 and ± ×(2.46 0.19) 105 erg cm−3 GPa−1, respectively.

2. Experimental method

Ta(2 nm)/Fe (Co or Ni) (15 nm)/Ta(2 nm) were deposited on 50 μm
thick PVDF and Si substrates by magnetron sputtering at room tem-
perature. The thickness of 2 nm Ta film deposition on the bottom (top)
of the magnetic thin films were employed to reduce the roughness of
flexible substrate and prevent the sample from oxidization, respec-
tively. Thermomechanical analyzer was utilized to determine the ani-
sotropic thermal expansion coefficient of PVDF, which is deduced to be
α31 = 150× 10−6 K−1 and α32 = 23.2 × 10−6 K−1 in the temperature
range of 200 to 300 K [15]. The magnetic hysteresis (MH) loops and
AMR curves under different stresses are measured by superconducting
quantum interference device (SQUID) and physical property measure-
ment system (PPMS).

3. Results and discussion

3.1. Thermal expansion of PVDF and magnetoelastic anisotropy of magnetic
materials

Fig. 1(a) shows a schematic of an anisotropic thermal expansion of
PVDF substrate, where α31 and α32 is defined as the thermal expansion
coefficient along x and y directions, respectively. The α31 is greater than
α32 by more than an order of magnitude, which means the shrinkage of
PVDF along the x direction is greater than y direction. So, a uniaxial
compressive stress can be generated on lowering the temperature, and
transferred to the magnetic films grown on the top of PVDF that results
in magnetoelastic anisotropy. In order to give a more intuitive under-
standing of the magnetoelastic anisotropy, the different scenarios of
stress induced magnetic anisotropy is described in Fig. 1(b). The zero
magnetoelastic anisotropy is defined as the magnetic easy axis, which is
not sensitive to stress. The positive (negative) magnetoelastic aniso-
tropy is defined as the magnetic easy axis prefers to be perpendicular
(parallel) to the applied compression stress.

3.2. Stress dependence of magnetic hysteresis loop

To investigate the stress induced magnetic anisotropy of Fe, Co and
Ni films on PVDF substrate. The MH loops of the films were measured as
a function of temperature along x and y directions. The stress induced
in the films at different temperature due to an anisotropic thermal ex-
pansion of PVDF substrate can be given as [7,15–17]

= −σ εE v/(1 )f
2 (2)

where Ef is the Young’s modulus of Fe (~131 GPa), Co (~114 GPa) and
Ni (~133 GPa), ν is the Poisson ratio of Fe (~0.37), Co (~0.40) and Ni
(~0.38) films [18], ε is the effective strain along x direction, which can
be written as [15]

= −ε T α αΔ ( )32 31 (3)

Fig. 2(a)–(f) compares the MH loops of Fe, Co and Ni films on PVDF
along x and y directions under different compressive stresses. The
normalized MH loops display notable and robust changes in the pre-
sence of compressive stress. The MH loops of Co film become more
slanted (squarer) along x (y) direction with the increase of compressive
stress [Fig. 2(b) and (e)]. However, the MH loops of Fe and Ni films
along x and y directions show an opposite behavior with the increase of
compressive stress [Fig. 2(a), (d) and (e), (f)]. The compressive stress
dependence of normalized remnant magnetization (Mr/Ms) for Fe, Co
and Ni films is summarized in Fig. 2(g)–(i). For Co films, the Mr/Ms

decreases (increases) along x (y) directions as shown in Fig. 2(h). While
for Fe and Ni films, the Mr/Ms increases (decreases) along x (y) direc-
tions as shown in Fig. 2(g) and (i), respectively. The obtained results are
different from that observed in the films on the Si substrate with dif-
ferent temperatures as shown in Fig. 3, which indicates that enhanced
magnetic anisotropy is induced by anisotropic thermal expansion of the
PVDF substrate. The reason why Fe and Ni films reveal the opposite
behavior in comparison with Co films under similar compressive stress
conditions is that Co owns the positive magnetostriction coefficient
while the negative magnetostriction coefficient for Fe and Ni [2].
Further, it can be observed that the Mr/Ms increases stronger along the
easy axis in the order of Fe, Co, and Ni thin films as shown in Fig. 2(g),
(h), and (i), respectively. This phenomenon can also be proved by the
stress-coefficient of magnetoelastic anisotropy, which will be discussed
in the last section.

3.3. Determination of magnetic anisotropy constant

To investigate the magnetoelastic anisotropy quantitatively, the
magnetic anisotropy constants of Fe, Co and Ni films under different
compressive stresses were determined by using the AMR measurement.
The AMR curves were measured by using the standard four-probe
technique by changing the angle θ between the magnetic field and
current (I) from 0 to 360° in the PVDF-based magnetic films while I is
fixed along either x or y direction, respectively [Inset of Fig. 4(a) and
(b)]. The representative curves for normalized magnetic torque which is
the relationship of the angle between the magnetization and magnetic
field can be obtained. The AMR equation is given as [19–24]

= + −⊥ ⊥R R R R cos θ( )xx ‖
2

M (1)

where θM is the angle between magnetic moment (M) and I directions,

Fig. 1. (a) The schematic diagram of PVDF deformation along α31 and α32 directions during the lowering of temperature from room temperature. (b) Classification of
magnetoelastic anisotropy (under compressive stress): zero magnetoelastic anisotropy positive magnetoelastic anisotropy and negative magnetoelastic anisotropy.
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and the resistance of minimum value R// and the maximum ⊥R , where
// and ⊥ corresponds to H parallel and perpendicular to I direction,
respectively.

Considering the Co films on PVDF for example, the curves of AMR
follow the orientation of external field that shows a periodically smooth
behavior at 240 K for I along x and y directions in Fig. 4(a) and (b),
respectively. The solid curves are cos2θ dependent, which coincides
with the AMR curve under 8000 Oe, indicates that the field is large
enough to ensure the magnetic moments align along the field for co-
herent rotation without hysteresis, which also implies the θM = θH,
where θH is the angle between the direction of H and I. But magnetic
moment MCo can no longer follow the cos2θH relationship due to pre-
sence of magnetic anisotropy when the applied magnetic field is less
than the saturated field. This results in the θM ≠ θH from 0 to 360°
when I along x and y directions.

However, the AMR values are directly related to θM on the basis of
Eq. (1). According to the different relationship of θM and θH, we can
further calculate and compare magnetic torque at different fields by
using the normalized magnetic torque equation, which can be ex-
pressed as

= = −l θ L θ μ M H sin θ θ( ) ( )/ ( )sM M 0 H M (2)

As shown in Fig. 5(a) and (b), normalized magnetic torque curves
exhibits different profile and increases with the decrease in the applied
magnetic field for I along x and y directions, respectively. When the
magnetic field is applied greater or equal to a saturation field, the
magnetic torque curves shows a constant profile that indicates the effect
of magnetic torque is negligible. While the effect of magnetic torque is
much more pronounced when the applied magnetic field is lower than
saturation field. Besides, we can witness that the experimental and si-
mulated normalized magnetic torque curves can overlap well, implying
that magnetic torque can be calculated accurately by Eq. (2).

During the test of magnetic torque, the magnetization-reversal
process is largely governed by the symmetry and anisotropic energies,
which is related to anisotropic constant. So, the free energy density of
the magnetic films with external field can be written as [25]

= − −E K sin θ μ M Hcos θ θ( )su
2

M 0 H M (3)

In the equilibrium state ∂

∂θ
E
M

= 0, the normalized magnetic torque
can be written as

= − =l θ sin θ θ K μ MH θ( ) ( ) [ /( )]sin(2 )M H M u 0 M (4)

Fig. 2. (a)-(f) The normalized MH loops under different compressive stress in Fe, Co and Ni films along x and y directions on PVDF substrate, respectively. (g)-(i) The
compressive stress dependence of Mr/Ms along x and y direction in Fe, Co and Ni, respectively. The inset shows the applied compressive stress configuration with
respect to the initial easy axis.

Fig. 3. The normalized MH loops under different temperatures in Fe (a), Co (b) and Ni (c) films on Si substrate.
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where E is the anisotropy energy, μ0 is the magnetic permittivity, Ms is
the saturation magnetization, and Ku is the magnetic anisotropy con-
stant. Thereby, we can obtain the Ku values under different magnetic
fields by fitting the magnetic torque curves by Eq. (4) in Fig. 5(a) and
(b).

3.4. Determination of stress-coefficient of magnetoelastic anisotropy

Fig. 6(a)–(f) shows the compressive stress dependence of the nor-
malized magnetic torque curves of Fe, Co and Ni films for I along x and
y directions, respectively. It clearly shows that the uniaxial magnetic
anisotropy is enhanced with the increase of applied compressive stress.
Fe and Ni films display an opposite phenomenon for I along x and y

directions in comparison with Co films, which is consistent with the
negative magnetoelastic anisotropy of Fe and Ni observed in Fig. 2. By
employing the normalized magnetic torque curves in Fig. 6, the Ku

values of Fe, Co and Ni films can be calculated by Eq. (4). As it can be
seen from the fitted outcomes in Fig. 7, Ku increases with the increase of
applied compressive stress. The change in the magnetic anisotropy of
the Fe, Co and Ni thin films on PVDF can be mainly attributed to the
change of magnetoelastic anisotropy. This also evidence by no change
in magnetic anisotropy of the films on Si within the measured tem-
perature range, because Si substrate does not provide anisotropy
thermal expansion like observed in PVDF substrate. The computed
stress-coefficient of magnetoelastic anisotropy (ΔKu/Δσ) for Fe, Co, and
Ni films are ± ×(6.31 0.19) 103 erg cm−3 GPa−1,

Fig. 4. The angular dependence of AMR curves at different magnetic fields in Co films for I is along x (a) and y (b) directions at 240 K.

Fig. 5. The experimental and simulated normalized magnetic torque curves in Co films under different magnetic fields for I along x (a) and y (b) directions at 240 K.

Fig. 6. The experimental and fitted normalized magnetic torque curves under different compressive stresses for I along x and y directions, respectively, in Fe (a,b), Co
(c,d), and Ni (e,f) films.
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± ×(2.71 0.13) 104 erg cm−3 GPa−1 and ± ×(2.46 0.19)
105 erg cm−3 GPa−1, respectively. These are the average values from
AMR measurement for I along x and y directions, respectively. The
stress-coefficient of magnetoelastic anisotropy shows a significant in-
crease in the trend by an order of magnitude with the ranking of Fe, Co
and Ni, which is consistent with discussed in the previous section.

4. Conclusions

In summary, we have systematically investigated the magnetoelastic
anisotropy of magnetic elements Fe, Co, and Ni thin films deposited on
PVDF substrate. From the MH loops analysis under various compressive
stresses, it is revealed qualitatively that Co thin film exhibits positive
magnetoelastic anisotropy, while Fe and Ni thin films have negative
magnetoelastic anisotropy. The magnetoelastic anisotropy constants for
these thin films under different compressive stresses were determined
using AMR measurements. Thus, the stress-coefficient of magnetoelastic
anisotropy of Fe, Co, and Ni thin films was determined to be

± ×(6.31 0.19) 103 erg cm−3 GPa−1, ± ×(2.71 0.13)
104 erg cm−3 GPa−1 and ± ×(2.46 0.19) 105 erg cm−3 GPa−1, respec-
tively. The determination of this basic magnetic parameter for magnetic
elements is helpful for evaluating the performance of magnetic devices
under flexible/stretchable conditions.
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